

Let's Talk Projects: IACMI Research Direction Dale Brosius Chief Commercialization Officer August 14, 2025

Convene. Connect. Catalvze.

IACMI – The Composites Institute

\$70M of DOE funding was matched by \$130M of industry, university, and state cost share

>60 R&D projects 25+ commercial products **Partnerships** 140+ Members Industry, Universities, National Labs,

Gov't Agencies

Technology

\$200M portfolio

Pipeline

100 Internships 100% placement rate

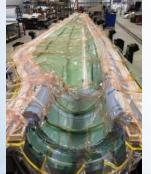
15,000 Trainees K-12, post-secondary & adult workers

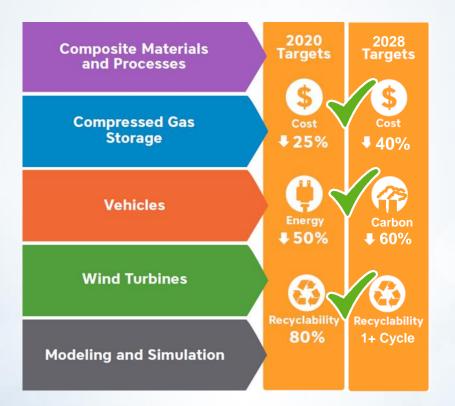
Jobs

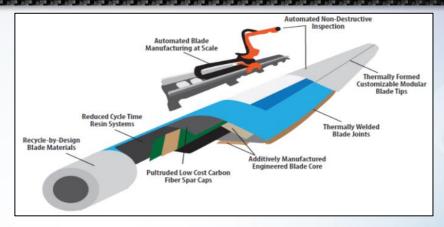
3,000 Manufacturing Job Commitments by IACMI members partners

Manufacturing Assets at Relevant Scale

PURDUE

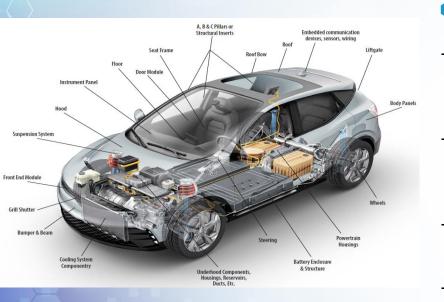





University of Dayton Research Institute

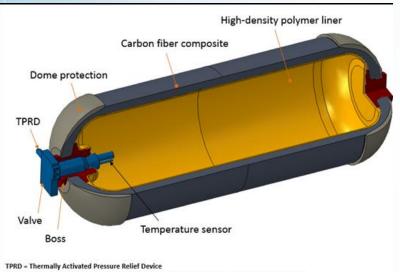
IACMI Technical Goals under DOE Funding

Targets are relative to 2015 baseline


Wind Energy Carbon Fiber Blades Nacelle Shafts Ultra-long Lightweight Nosecone Additively Manufactured Engineered Composite Bedplate Composite lowers Composite ubstructure

Needs:

- Materials and processes that reduce the overall cost of fabrication, inspection, and maintenance
- Novel blade designs and other wind energy harnessing devices
- Materials that are inherently **circular** and easy to recover and **recycle**
- Recycling solutions for existing blades due to retire in coming years


Electric, Connected and Autonomous Vehicles

Needs:

- Materials with lower overall carbon footprint, including bio-based and inherently circular polymers
- Hybrid materials and manufacturing processes like co-molding, overmolding and insert molding to reduce part count
- **Multifunctional structures** that eliminate steps or secondary components
- **Digital integration** to optimize design, incorporate sensors and monitor part health

Hydrogen Transport and Storage

Credit: Process Modeling Group, Nuclear Engineering Division. Argonne National Laboratory (ANL)

Needs:

- Lower cost, high strength carbon fiber or additives that reduce the amount of carbon fiber required for pressure vessels
- Materials that reduce permeation and leakage, especially in liquid hydrogen storage
- Incorporation of structural health monitoring to enable lower factors of safety

Cross-cutting R&D Needs

- Circular Economy and Life Cycle Analysis:
- Sustainable materials (bio-derived, CO₂-derived, up- and/or re-cycled, etc.)
- Efficient manufacturing techniques (electrification of manufacturing, near-zero waste)
- Design for Sustainability
- Digitalization and Industry 4.0:
- Digital process twins via simulation, incorporating real time life cycle analysis (LCA) into the design process
- Integration of smart sensing and AI/ML into composite manufacturing processes, supported by digital twins.
- Materials and Processes (in addition to those mentioned previously):
- Low cost, rapid tooling approaches for composites
- Joining technologies, including bonding, fastening and welding
- NDE techniques

IACMI 2.0 – Initial Projects Nearing Kickoff

- Robotics for Automated Wind Blade Finishing (NREL)
 - Automated feedback control for cut, grind, sand
 - 36 months duration
 - LM Wind
- Adhesive Deposition for Wind Blade Mfg (ORNL)
 - Digital scanning bond line gap for half shells
 - 12 months duration
 - LM Wind, TPI, UT, NREL
- Cryogenic H₂ Storage (UDRI)
 - Use VACNT's to suppress onset of micro cracking
 - 12 months duration (Phase 1)
 - Teijin, NAWA, Faurecia, Airbus
- Other projects in review

Project Development Steps

1. Idea Paper Development & Review 2. Full Project Plan 3. Review & Approve Full Project Plan

4. Contracting

5. Kickoff Project!

*Proposal lead must be IACMI member in good standing

Develop Idea Paper

Ways to Get Involved

Convene, Connect & Catalyze

- IACMI Website
- Working Groups
- IACMI Leadership
- Technology Area Directors

- Members Meetings
- Social Media

Innovation Insights

Develop Idea Paper Engage IACMI Core Partners

- ✓ Identify the opportunity
- ✓ Work with IACMI Technology Area Directors, Working Groups, and IACMI Leadership
- ✓ Complete Idea Paper & submit to IACMI

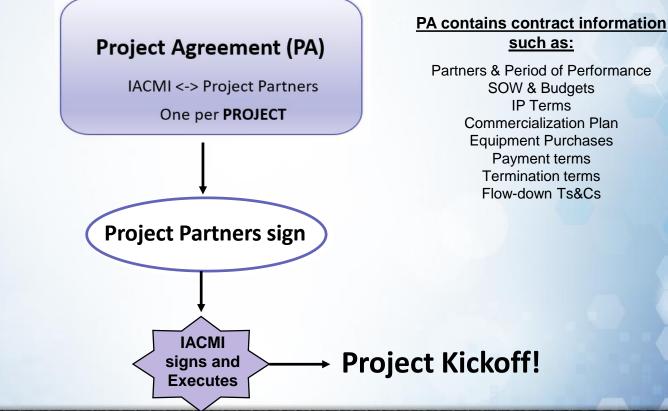
World Leading Resources in Composites Manufacturing

Develop Idea Paper Write & Submit the Idea Paper

	IACIVILITUE a Faper It is strongly recommended for proposers to work with an IACMI core partner(s) to formulate a project idea. Upon completion, please submit this Idea Paper to IACMI's Chief Operating		We linne	4	
Team Members	Additional Project Partners:	Provide a high-level technoeconomic analysis (detailed TEA showing calculations will be requ	TEA) that supports this project ide tired at the next stage of the project	*Expected Duration: (months):	
Project Description		Examples: The use of recycled carbon fiber instead of virg footprint of the finished part by 50% and reduc practice. The combination of a 50% reduction in cycle ti 5% is estimated to reduce recurring part cost b	e costs by greater than 15% versus me and reduction of material waste y 25% and tooling investment cost.	IACMI Federal Funding:	AND I
Targeted IACMI goals		The use of a high strength glass SMC, augmented with local continuous reinforce in cycle times of 120 second, will result in a part that is cost competitive to welde with a similar mass as aluminum.			2
Initial TEA/LCA		What is new or innovative about this project ide <u>done before</u>)?	ea (i.e., <u>How is it different than wh</u> e	Industry in-kind cost share:	5
ROM Budget Summary				*The Expected Duration and Rough Order Magnitude Budget Summary are not formal declarations, but rather estimates to give the project some general boundaries during the review of this Initial Idea Paper (IIP).	2

Township on which to an IACN

Develop Full Project Plan


FULL Project Plan Includes:

- Relevance
- Broader impact
- Technical merit
- Required resources
- Partnering strategy
- Consent to IP Terms
- Commercialization Plan
- Task descriptions & Milestones
- Budget (including CS)

The Full Project Plan will be used to directly populate the Project Agreement (contract) between IACMI and the Project Partners.

• TEA, LCA

Contracting

SOW & Budgets **Commercialization Plan Equipment Purchases** Payment terms Termination terms Flow-down Ts&Cs

IACMI Wants Your Input and Ideas!

- Projects will require industry cost share, nominally 1:1 against federal funds
 - Most will be in-kind (personnel, materials, etc.)
 - Cash cost share may be required depending on need for tooling or equipment
 - Projects with multiple industry partners provide greatest leverage on cost share
- If you have an idea for a full project, including potential core IACMI R&D and industry partners:
 - Download and fill out the Initial Idea Paper for consideration (from IACMI website)
 - Be prepared to engage with IACMI headquarters and various R&D partners to more fully flesh out the details

 If you have products or technologies that you believe can help IACMI achieve the DOE goals, and are looking for help identifying a project and potential partners:

- Download and fill out as much of the Initial Idea Paper as you can
- Note your interest in participating in a future project
- Identify where your product or service can bring value, including market applications

Thank You!

69

Convene. Connect. Catalvze.