

IACMI Future Mobility/Vehicles Technology Working Group Summary June 20, 2023

Circular Economy Digitalization

Materials & Manufacturing Multifunctional Integration

Skills **Development**

Convene. Connect. Catalyze.

Convene. Connect. Catalyze.

6.9

FMVT WG Steering Committee - Openings

Sid Asthana Polymer24

Open

Dan Coughlin ORNL

Eric Haiss

Brian Knouff ORNL

Helicoid

Cliff Eberle IACMI

Open

Open

Ginger Gardiner **CompositesWorld**

William Henken Volkswagen

Steve Nolet TPI Composites

Hendrik Mainka Co-chair Volkswagen

Ray Boeman Co-chair **Michigan State University**

Dale Brosius Advisor IACMI

Uday Vaidya Advisor IACMI

- Develop, mature, & scale-up emerging innovative materials and manufacturing technologies that can significantly differentiate composites unique value proposition for future mobility.
 - Far beyond demonstrating COTS technology in an application.
- Provide a platform, framework, and roadmap for:
 - Increased and broadened member recruitment, engagement, benefit
 - Coordinated workstreams to broaden member exposure while protecting IP
 Opportunity to pursue parallel pathways (e.g., evaluate materials from
 - multiple materials in new processes)

Approach

- Identify automotive components that are most enabled by emerging technology
 - Conventional vehicles
 - Battery Electric Vehicles
- Identify promising materials & manufacturing technology where advancements by IACMI and Members can make significant impacts
 - Cost materials, cycle time, hybridization, multifunctionality, scrap, tooling, assembly, etc.
 - Value attributes not possible with metals, increased functionality/package space
 - Sustainability bio-derived/recycled materials, low scrap, non-paint technology
- Define workstream activities that mature promising technologies to enable most impactful automotive components - CONVERGENCE
- Address market barriers and Workforce Development opportunities

Many components are candidates for composites

COMPOSITE

Examples of emerging technologies

Molded in Functional Electronics

Over-molded for optimal performance & cost Emerging Materials – sustainability & functionality

Novel processes

» Scratch test according GS 97034-9 followed by self-healing

1st Scratch

20th Scratch

Self-healing

at 60°C

Self-healing

at 60°C

Emerging technologies & high-impact applications define workstreams

- 7:30 8:15am Opening Presentations
- 8:20 9:00am Breakout
 - Emerging Injection Molding Technology (Boeman/Vaidya)
 - Additive Manufacturing Compression Molding (Kunc)
 - Roadmap to Commercialization (Knouff/Halsband)
- 9:05 9:30am Breakout Reports
- 9:30am Adjourn

Breakout 1 (Boeman/Vaidya) : Injection Molding Workstream Technologies

Value-add Technologies that:

- Add/Increase performance
- Reduce cost (materials, process, tooling & assembly)
- Integrate functionality
- Reduce weight
- Add value metals can't

Additive manufactured in-molded hardpoints

Examples:

- In-mold coating reduce paint
- Water-assist IM hollow sections
- Functional Electronics
- Sustainable Materials
- Insert/hybrid molding

Breakout 2 (Kunc): Additive Manufacturing and Compression Molding

AM-CM

Fast acting press being enhanced with shuttle system to enable shorter cycle times.

Compression molded AM multimaterial preforms Combining three-dimensional control of additive manufacturing with quality and efficiency of compression molding

- High-rate process (less than 3-minute cycle time demonstrated)
- Material with controlled microstructure
- Low porosity
- Multi-material capability
- Inspectable process
- Embedded components
- Continuous AM-CM
 - Making parts larger than press platens
 - Low CAPEX

Breakout 3 (Knouff/Halsband): Roadmap to Commercialize Emerging Materials/Technologies

- Goal is to accelerate adoption of new materials/technologies
- Determine the checklist that supply chain must navigate/be prepared for to have new technologies adopted by OEM?
- Define a roadmap and utilize in demonstration project
- May have different roadmap variants depending on workstream

Example: Emerging materials

How to introduce NM in vehicle technology cycle? Design? Manufacturing?

What does NM offer? Lightweight, multifunctionality, ... Demonstrators need to show NM feasibility, capability via parts but also test data

> NM properties at coupon, plaque, component and subsystem levels

IACMI's coupon & test capabilities

- Future of mobility WG has is pursuing materials and manufacturing workstreams
- Workstream focus Holistic solutions that have transformational impact
- Will meet June 22nd Thursday 7:30 AM
- Breakout sessions on three topics
- Please join us and engage with your best ideasThank you!

Contact: Ray Boeman, boemanrg@msu.edu, 865-274-1024