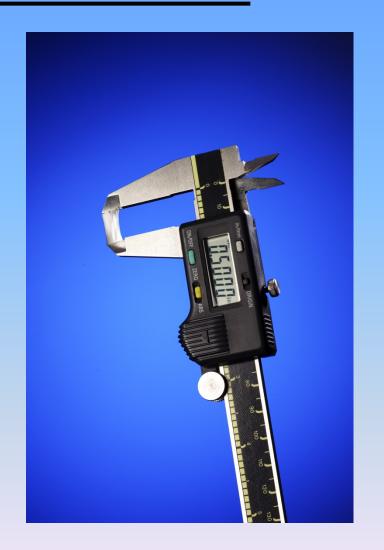
MINIFIBERS, INC.

IACMI Introduction 2019

Our History

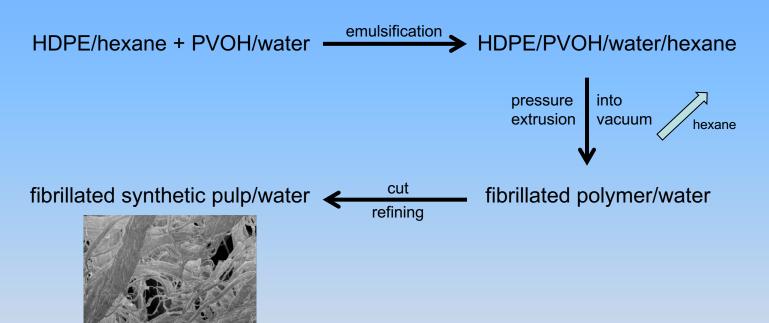
- Founded in 1967 by G.B. Keith
 - G.B., then an engineer at Eastman Chemical, designed and patented what later became known as the Lummus cutter. (US Patent 3,485,120)
 - MiniFIBERS was founded upon this fiber cutting technology.
- MiniFIBERS produces precision cut fibers from all synthetics except carbon and glass


Four Business Platforms

- Precision Cut Fibers
 - A broad range of fibers in precision cut lengths.
- Fybrel[®] Synthetic Wood Pulp
 - HDPE fibrillated fibers in wet lap sheets.
- Short Stuff® Fibrillated HDPE
 - Fybrel[®] in a dried form.
- Specialty Extruded Yarns
 - Multifilament LOY, POY made to order.

Precision Cut Fibers

Fiber Type	Specific Gravity (g/cm3)	Melt Point	Moisture Regain (%)	Tenacity (gpd)	Chemical Reactivity	
Acrylic Fiber	1.14 - 1.19	Does not melt. Degradation begins at ~290°C / 554°F.	1.0 - 2.5	1.9 - 3.4	Resists most acids, oxidants, and solvents. Sensitive to nitric acid, dimethyl formamide, and hot alkalis.	
Basofil Fiber	1.4	Does not melt.	< 5.0	~2.0	Excellent resistance to alkalis. Poor resistance to strong acids.	
Cellulose (for comparison)	1.5	Does not melt.	10.7 - 16.1	-	Resists most organic solvents, acetone, and formic acid. Sensitive to other acids, strong alkalis, cuprammonium compounds, and certain oxidants.	
E-Glass Fiber (for comparison)	2.58	Does not melt. Softens at ~840°C / 1550°F.	< 1.0	~15.3	Unaffected by bleaches and solvents. Fair resistance to most acids at low concentrations.	
Meta-Aramid Fiber	1.37 - 1.38	Does not melt. Degradation begins at ~300°C / 572°F. Carbonizes at ~425°C / 800°F.	3.5 - 5.1	2.6 - 5.0	Good resistance to acids and bases.	
Nylon 6,6 Fiber	1.14	Sticks at ~230°C / 445°F. Melts at 255-265°C / 491-509°F.	3.5 - 5.0	2.3 - 9.3	Resists most organic solvents and bleaching agents. Sensitive to concentrated acids, phenol, hot dimethyl formamide, and hot, concentrated bases.	
Para-Aramid Fiber	1.44	Does not melt. Degradation begins at ~482°C / 900°F.	3.5 - 5.0	~22.6	Good resistance to diluted acids and bases. Degraded by strong mineral acids.	
PLA Fiber	1.25	225°C / 437°F	< 1.0	3.3 - 4.0	Poor resistance to bases.	
Polyester Fiber	1.38	Sticks at 227-241°C / 440-465°F. Melts at 250-288°C / 482-550°F.	< 1.0		Resists most antioxidants. Sensitive to strong bases, concentrated nitric and sulfuric acids, nitrobenzene, and phenols.	
Polyester Fiber - Undrawn	1.38	Sticks at 227-241°C / 440-465°F. Melts at 250-288°C / 482-550°F.	< 1.0	< 1.5	Resists most antioxidants. Sensitive to strong bases, concentrated nitric and sulfuric acids, nitrobenzene, and phenols.	
Polyethylene Fiber - Low Melt	0.96	121-129°C / 250-265°F	< 1.0	< 1.5	Resists most bases, acids, and solvents. Sensitive to hot, chlorinated hydrocarbons.	
Polyethylene Fiber - UHMW	0.96	~147°C / 296°F	< 1.0	25.5 - 30.5	Resists most bases, acids, and solvents.	
Polypropylene Fiber	0.90	Softens at 141-177°C / 285-350°F. Melts at 163-168°C / 325-335°F.	< 1.0		Resists common solvents, strong acids and alkalis. Sensitive to chlorinated solvents at high temperatures and aromatic compounds.	
PolyVinyl Alcohol Fiber	1.30	~230°C / ~446°F	1.0 - 5.0	~14.0	Excellent resistance to acids and bases.	
Rayon Fiber - Regular Tenacity	1.50 - 1.55	Does not melt. Chars and decomposes at 175-204°C / 347-400°F.	10.7 - 16.0	1.6 - 2.6	Poor resistance to strong acids and bases.	
Rayon Fiber - High Tenacity	1.50 - 1.55	Does not melt. Chars and decomposes at 175-204°C / 347-400°F.	10.7 - 16.0	4.3 - 5.3	Poor resistance to strong acids. Excellent resistance to strong bases.	


Platform 2 - Fybrel®

Fybrel®

Process for Production of Fibrillated HDPE

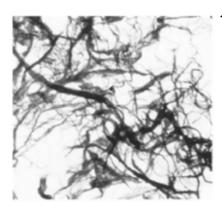
(Process patent by Crown Zellerbach – 1970s)

What is Fybrel?

Fybrel (Polyolefin Synthetic Pulp) is

a hydrophilic,

Used For Heat Sealing!


highly fibrillated,

Used for particle trapping – filtration!


polyolefin fiber

Wood pulp

Fybrel

Polyolefin cut fiber

ว

Platform 3 – Short Stuff®

Range of Sizes

Physical Properties of SHORT STUFF® HDPE Fibers

GRADE	ESS5F	ESS50F	ESS2F	E380F	E505F	E780F
Average Fiber Length Expressed in millimeters (mm)	~0.1	~0.1	~0.6	~0.7	~0.9	~1.6
Fiber Diameter Expressed in microns	5	5	5	15	15	25
Surface Area (m²/gm) Measured by gas absorption	12	12	12	8	8	8
Melting Point	←	←	~135°C ~275°F			
Moisture Content (%)	←	←	<2.0		\longrightarrow	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Specific Gravity (g/cm³)	←	←	0.96			
Polypropylene glycol treated for use in aqueous systems		*			*	

Benefits for Coatings, Adhesives, Sealants

- ✓ Improves particle suspension and dispersion
- ✓ Improves flexibility and crack resistance
- ✓ Improves impact and freeze thaw performance
- ✓ Improves water resistance
- ✓ Imparts predictable rheology
- ✓ Improves coalescence and compatibilization

Platform 4 – Specialty Extrusion

Specialty Extruded Yarns

- Multifilament LOY, POY
 - Hytrel[®] TPC-ET
 - Kynar® PVDF
 - Low Melt LLDPE
 - PBT
 - PPS
- Hybrid Yarns made to order
- Used in composites, refractories, textiles

MINIFIBERS, INC. CELEBRATING 50 YEARS

Ira L. Stone | MiniFIBERS, Inc.

2923 Boones Creek Road | Johnson City, TN 37615 Office: 423 282-4242 x 225 | Fax: 423 282-1450 | Cell: 423 791-4722 istone@minifibers.com | www.minifibers.com

Thank You

