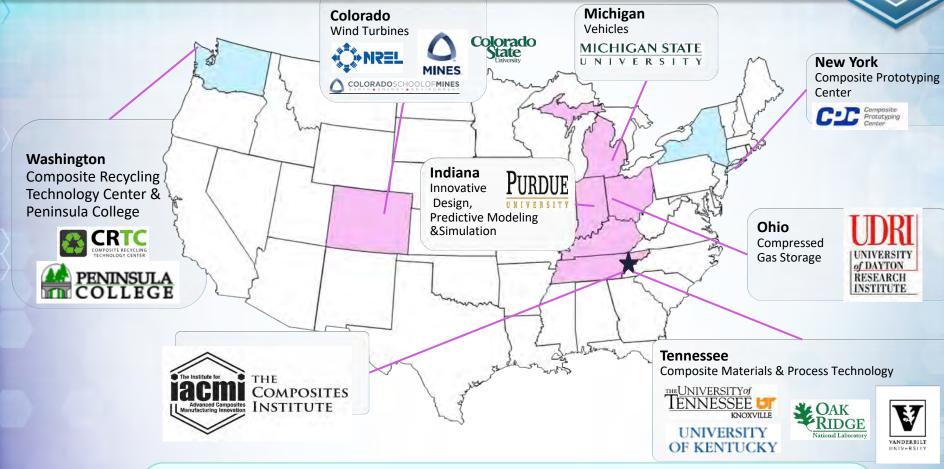
# **IACMI** Facilities and **Capabilities Update**

**Dale Brosius** 

**Chief Commercialization Officer** 

January 30, 2019








# IACMI – A National Institute for Advanced Composites





#### **Technical Goals:**

- Lower carbon fiber—reinforced polymer (CFRP) cost
- Reduce CFRP embodied energy
- Improve composite recyclability into useful products

### Capabilities across multiple competencies



- · Low-cost fiber
- Fast processing resins
- · User-friendly forms
- · Rapid composite conversion processes
- · NDE/repair
- · Recycling
- · Joining
- · Cost-efficient part design
- · Manufacturing simulation
- · Materials database

#### **Materials**

Insertion **Points** 







Manufacturing (Vehicles, Wind, CGS)





**Design and Simulation** 

Technology Readiness

### **Unparalleled Capabilities Worldwide**





Solution spinning line



Carbon Fiber Technology Facility



Pre-preg production pilot/full scale



Pilot-scale PCM 750 ton press



Full Scale PCM

4,000 ton press









**Composite Materials** 

# **UKY CAER solution spinning line for multifilament continuous tow**







# Heads UP, Real-Time Spinning Data Acquisition and Logging



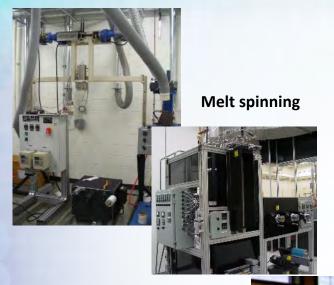
- Polymer dope
  - Flow rate
  - Amount remaining
  - Temperature
- Filtration pressure drop
  - Temperature
- Spinneret pressure drop
  - Temperature
- Tow tension down the line
  - Godet drive linear speeds
    - Tow draw ratios

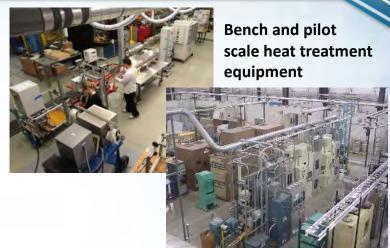




# Robotic Single Filament Tensile Testing and Linear Density







- FAVIMAT +
- Vastly increases single filament testing efficiency
  - 100s of filaments per sample



# Unique open-access carbon fiber processing capabilities









#### **Textile PAN based CF**








IACMI partner, Oak Ridge National Laboratory, has demonstrated a production method estimated to reduce the cost of carbon fiber as much as 50% and the energy used in production by more than 60%.

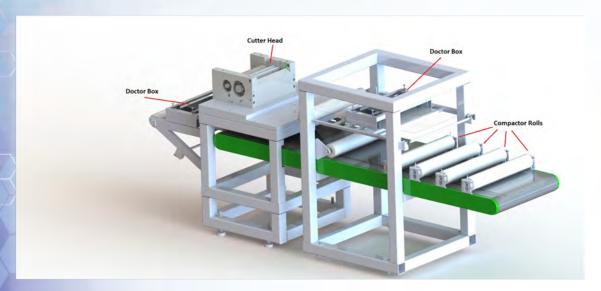
IACMI generating properties on composites produced with textile PAN carbon fiber




# UTK: Lab Scale Flexible Automated Infused Tow and Pre-Preg Manufacturing






Manual Method



**Automated Method** 

### Sheet molding compound (SMC) line - UTK





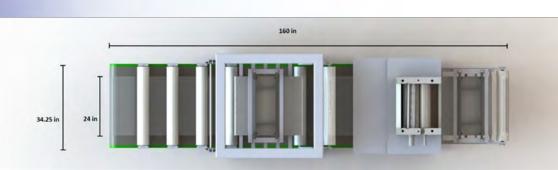





Illustration of cutting head of the SMC line

- Custom line
- Produce up to 18" wide SMC
- Glass, carbon, basalt SMC
- For use in multiple IACMI projects
- Materials collaboration with industry partners



# COMPOSITIS I COMPOSITIS I COMPOSITIS I INSTITUTE

#### **Specifications**

- Berstorff Model ZE25x30D Gala Pelletizing Line
- Complete Lab Size Under Water Pelletizing Line
- Screw size 25 mm
- L/D ratio- 30:1
- 15 HP, Gear Box Ratio 4:1

#### **IACMI Use/projects**

- Compounding of LCCF and other fibers with a range of olefin and engineered resins
- Multiphase syntactic foams and color compounds
- Production of noodles, pellets and tapes
- Feedstock for multiple processes





# 12" prepreg line – SURF facility in Detroit









### Net shape preforming – Laystitch at UDI



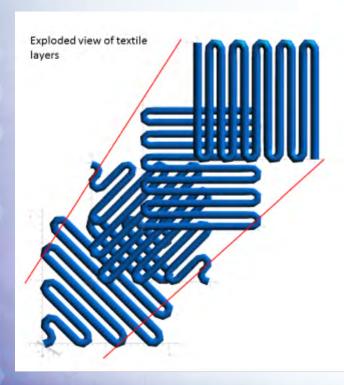


#### Complex shaped CFRP parts:

- load detour
- load introduction
- > stiffening function





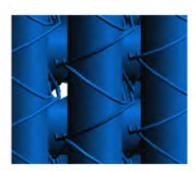

#### **Potential applications:**

- Cleats, clips, brackets
- Window frames
- Frame elements

### **Net Shape Preforming - Laystitch**



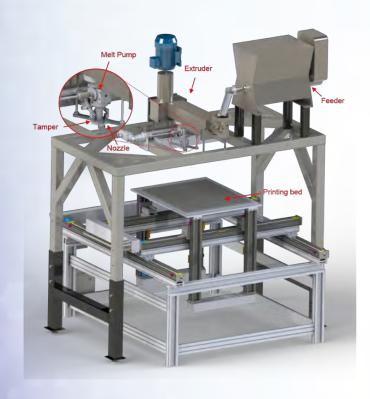
# Simulation and fabrication of quasi-isotropic preform






Back Side – Quasi-Isotropic Laystitch preform. Differential amount of stitching is an artifact of the number of layers printed to show the quasi-isotropic nature of the preform.




Front Side – Quasi-Isotropic Laystitch preform (0, +/- 45, 90 Degree Layers all visible).





## **Additive Manufacturing - Purdue**







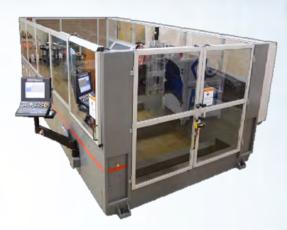
#### **Composites Molding Tools Printed**

#### 50% Carbon Fiber/PPS





**Thermoforming Tool** 




**Compression Molding Pin Bracket Tool** 

# High Temperature Tooling by Additive Manufacturing - UDRI



- Collaborative effort with Cincinnati,
   Inc (1 hour from UDRI)
- Focus on single sided tooling capable of 350F and 100 psi cure (autoclave, Rapidclave, e.g.)
- Focus material is specially formulated carbon fiber filled polysulfone. Other materials, such as PPS and PEI have also been trialed.





## Big Area Additive Manufacturing - ORNL









Recent enhancements in physical scale, speed of production, and work in high temperature polymer composites, e.g. PPS/CF

## 3D printed steel tooling - ORNL







## Parts molded from 3D printed steel tooling - ORNL





# **Compression presses - UDRI**







## **Compression Molding and HPRTM - Purdue**





### **Compression press – SURF**





4 x double acting cylinder for parallelism control

2 x single acting cylinder

- Manufactured by Schuler
- Short-stroke design
- Multi-process capable
  - "Closed mold" infusion
  - Compression molding
  - Thermoplastic forming, etc.
- Specifications
  - 36,000kN (4,000T)
  - Platen: 3.6m x 2.4m (~12ft x 8ft)
- Operational since October 2017



## **Compression press - SURF**







### Tools currently available for project use



#### Saturn Fender





Tonneau cover (inner & outer)
Ford Sport Trac



#### Chevy Volt Battery Box



# Resin mixing unit for HPRTM and wet pressing (SURF)



- Capable of processing epoxies and polyurethane systems
- High pressure (120 bar) capability



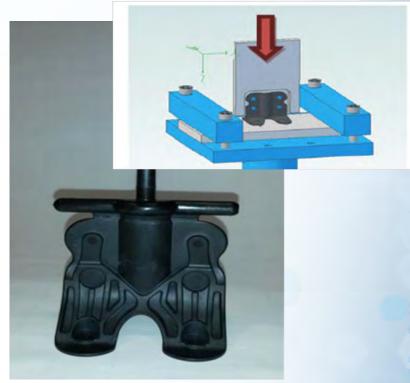


## Purdue – Injection Over Molding (330 ton)





# Purdue – Injection Over Molding w/preform line






## **UDRI Facility – Injection Over Molding (440 ton)**







# Injection molding press - SURF (3300 ton)





MILACRON°

- Built by Milacron
- Specifications
  - 29,500kN (3,315T)
  - Platen: 3m x 2.5m (~10ft x 8ft)
  - 413 oz. max shot size (multiple screw sizes)
- Operational since February 2017



## **Autoclave - UDRI**





### Rapidclave® curing - UDRI



- Globe Machine Rapidclave® equipment at former National Composite Center site
- Provides heating and cooling capabailities on single sided tooling at rates over 10X that of autoclave processing at similar pressures, e.g., 100psi
- Time on equipment is being made available to UDRI under consignment for IACMI projects



### **CPC Manufacturing Floor**



#### **CPC supports the following processes & functions:**

**Automated Fiber Placement** 

RTM / VaRTM

5 Axis CNC Routing Cell

Autoclaves, Ovens

Compression Molding, Heated Press

Hand Lay-Up with Laser projection assisted templates

and kitting capabilities

Clean Room (Class 100,000)

Single Ply Cutting System with

nesting s/w

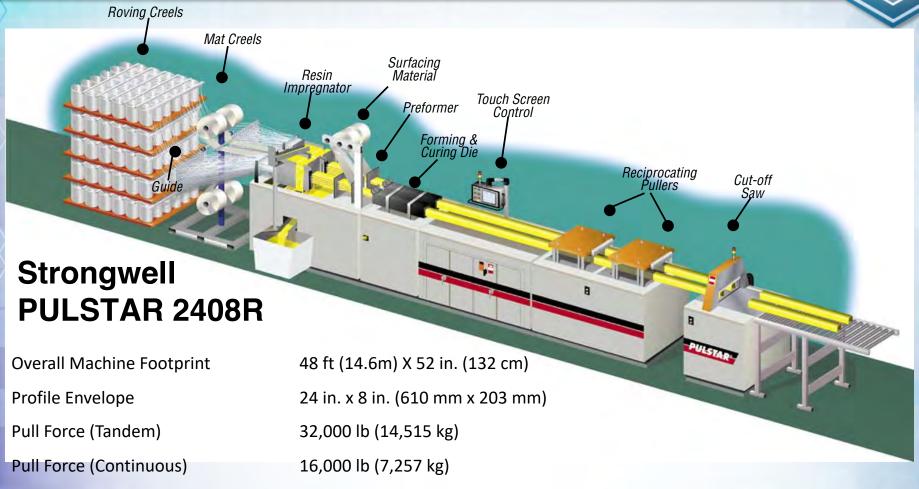
Test and inspection – NDT and

CMM tools and instruments

3D Printer

Walk-in Freezer

### **Laser Consolidation Fiber Placement -CPC**







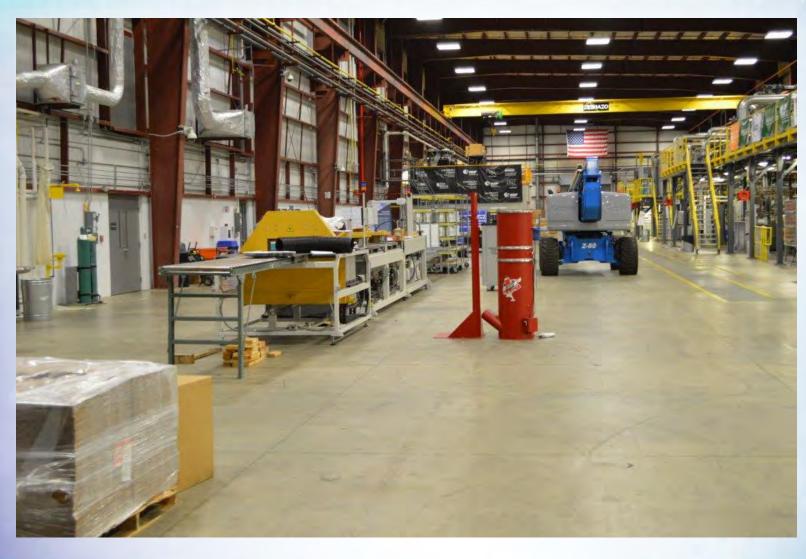

### **IACMI Pultrusion Machine - ORNL CFTF**





24,000 lb (10,886 kg)

1-120 in./min (2-305 cm/min)


**Source: Strongwell** 

Clamp Force

**Speed Range** 

### **IACMI Pultrusion Machine - ORNL CFTF**





### Large scale infusion equipment - NREL







- Multiple station valves enable up to eight individual vacuum sources for larger infusions
- Graco automated mixing and dispensing machine
- Designed for use with epoxy infusion systems

- MVP automated mixing and dispensing machine
- Designed for use with polyesters, vinyl esters and ELIUM® thermoplastic

### **Large part infusion - NREL**



13m blade shell At CoMET facility



### **Wind Blade Tooling**







48.7m blade tip mold Courtesy GE

48.7m shear web mold Courtesy GE

### **Wind Blade Tooling**





9m BSDS blade components Courtesy TPI Composites



Portion of 45m spar cap infusion mold Courtesy DowAksa

## RocTool Induction Heating / Fast cycle processing of thermoplastic composites (MDF) installed July 2017



#### **Equipment specifications**

- Induction generator DZ150KW
- Tactile interface RT 21
- Closed cooling unit R45 model
- Performance cooling
- RocTool Technology / Tool Hardware

#### **IACMI** projects

Compression molding

Class A surface finish

Fast cycle time in recycled and virgin carbon fiber thermoplastic mats

Evaluation of range of material forms and resin for processing-quality-cycle times



Representative System and parts







### Plasmatreat unit at MDF (Jet - RD1004 / Generator - FG5001 / Transformer - HTR1233) - MDF

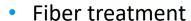













Enabling plasma treatment for surface enhancement

Tennessee (in place) and Michigan (planned)



- Cleaning, etching, polymerization, surface activation and increased manufacturability.
- Bonding enhancement of low surface energy substrates



- Surface and Interface enhancement
- Overmolding/tape bonding
- Multi-material joining
- Additive manufacturing layer by layer
- Product development





### Plasmatreat and RocTool at SURF







Plasma cleaning & coating (2 systems via LIFT)

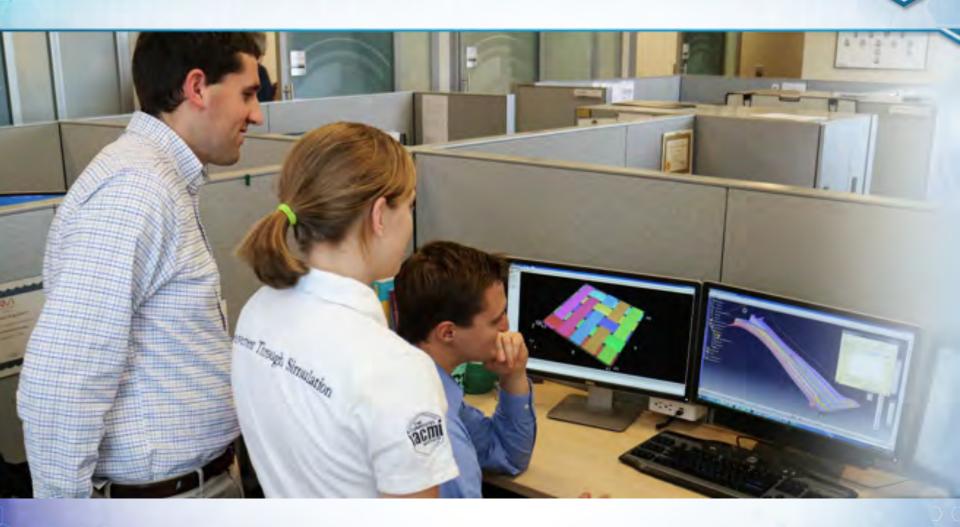


Systems for rapid (induction) heat-cool for injection & compression molding





# **Design Modeling** and Simulation


### **Indiana Manufacturing Institute**





### **Composites Virtual Factory**





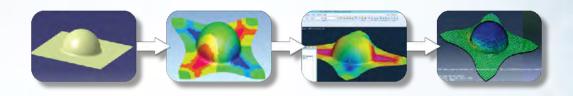
### Manufacturing Informed Design







**Expertise** 




Collaboration

### **Composites Virtual Factory Vision**



**End-to-end** composites simulation.

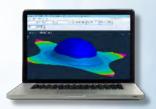


Powered by integrated and validated commercial software.



Design

Manufacturing


PAM-FORM 2G



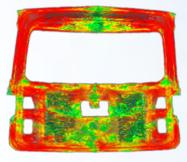
In a secure, collaborative, cloud-based environment.



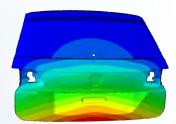




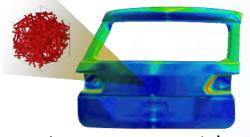
### Driven by End-to-End Simulation







**Current Metal Design** 




Redesign in CATIA



Predict fiber orientation with Moldex3D



Design for manufacturing informed performance with Abaqus



Integrate material properties with Digimat

### **Delivering Composites Simulation Tools**









COMPRO | RAVEN

CATIA | ABAQUS | ACCELRYS | ENOVIA | DELMIA

SWIFTCOMP | VABS







A single platform - with major composites software.

### **Integrated Workflow Apps**





Additive Manufacturing











Injection
Overmolding













**HP-RTM** 









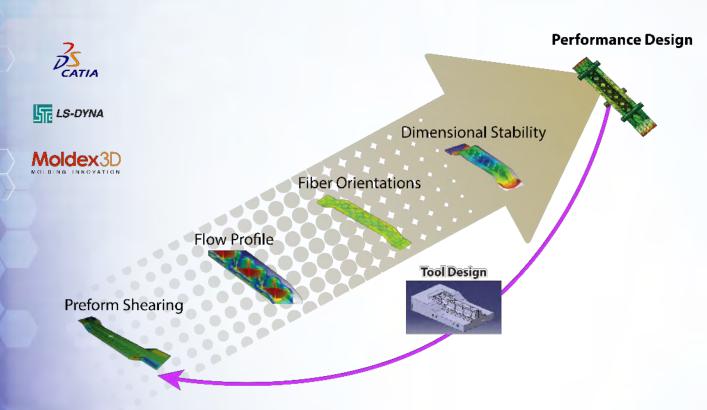




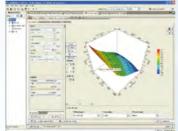
Compression Molding










### Code Integration Makes Possible





#### **Optimization**



#### Sensitivity Studies



### **Delivering Simulation Tools in the Cloud**









A secure cloud services
platform, offering
compute power,
file storage,
content delivery,
and other functionality
to help businesses
scale and grow.



**Testing** 

### **Materials and Mechanical Testing**



The IACMI network includes numerous labs capable of testing fiber and resin properties, as well as mechanical properties on molded components and structural testing of assemblies

- All ASTM/ISO test methods for numerous specimen geometries
- Hot/wet, cold, fatigue, chemical exposure, creep, etc.
- Panel fabrication and specimen preparation
- Resin rheology, fabric drapability/formability and permeability
- Larger scale structural tests at UDRI, Vanderbilt, NREL

Just ask your IACMI contact and we can direct your enquiry to the right location(s) to meet your needs

### Validation Labs - Purdue







### **UDRI Facility**



Analytical Lab

**Environmental Conditioning Lab** 



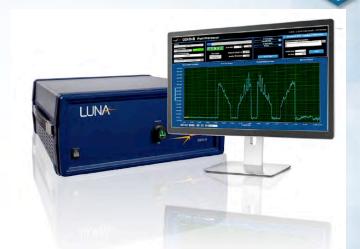


### **Laboratories - SURF**

- Analytical-wet lab & sample prep (340 m²)
  - Material preparation (e.g., mixing)
  - Materials Characterization
    - FTIR, DSC/DMA, Microscopy, etc
  - Trimming, cutting, grinding, etc.

- Controlled process lab (450 m²)
  - Temperature & humidity controlled
  - Negative pressure & filtered return (carbon containment)
  - Space for pre-preg & tape lay-up lines




## **LUNA Fiber Optic Strain and Temperature Sensing (ODiSI-B 5.0) System**



- OPT06003 Full SW & HW upgrade includes ver 5.0.0 and upgrade to
  electronics, optical network, new standoff,
  High Definition sensing upgrade, system
  alignment and test. High-Speed CFG
  option.
- FBI Gauge 3D Visualization Software Package Acquisition





#### ODiSI - Key Benefits

- High definition sensing offers unprecedented visibility into a design's structural performance
- Low profile and flexible sensors ideal for embedding within composite structures and measuring strain on curved surfaces
- Corrosion resistant, dielectric, and immune to EMI/RFI
- An ideal tool for validating FE models of composite structures

### **Mobile NDE Lab Technologies - Vanderbilt**



#### Flaw detection in composites

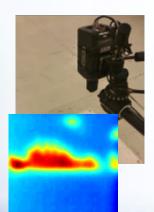
Mistras Acoustic Emission System 01/2017





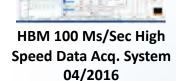


Keyence Laser Profilometer 08/2015




Keyence Laser-Displacement Sensors 08/2015

### Cure Monitoring for Composites




Olympus EPOCH 650
Portable Ultrasonic NDE
Systems 01/2017



FLIR High Resolution IR Camera 03/2016







National Instruments PXI 16 bit, 4 MHz signal driver 12/2016



Recycling

### **Recycling Shredder (UTK)**

# COMPOSITIS I ACMI

#### **MS-1714** Dual Shaft Shear Shredder

- Feed Chamber Opening: 17" x 14"
- Discharge Opening: 17" x 14"
- Infeed Hopper: Open Top: ½ Cubic Yard
- Diameter of Shredding Knives: 7-1/2" Thickness of Knives: 5/8"
- Motor: 15HP, 1800RPM Voltage: 480/3/60

#### **IACMI** projects

- Shredding aerospace end of life parts
- Recycling thermoset cured resins and composites
- Glass and carbon fiber thermoplastic shreds
- Reprocessing in extrusion-compression, injection-compression and other downstream processes



### **Composites Recycling Technology Center**





- CRTC, located in Port Angeles, Washington
- Objective to recycle scrap prepreginto useful parts
- Initial products developed and shipping







### **Working Relationships - Recycling**



- Composite Recycling Technology Center
- Carbon Conversions
- Vartega
- ELG Carbon Fiber
- GreenTex Solutions
- CHZ Technolgies
- Adherent Technologies

