
IACMI Facilities and Capabilities Update

Uday Vaidya

Chief Technology Officer

January 17, 2018

IACMI – A National Institute for Advanced Composites

Technical Goals:

- Lower carbon fiber—reinforced polymer (CFRP) cost
- Reduce CFRP embodied energy
- Improve composite recyclability into useful products

An Integrated Approach Is Required

- · Low-cost fiber
- Fast processing resins
- · User-friendly forms
- · Rapid composite conversion processes
- · NDE/repair
- · Recycling
- Joining
- · Cost-efficient part design
- · Manufacturing simulation
- · Materials database

Materials

Insertion **Points**

Manufacturing (Vehicles, Wind, CGS)

Design and Simulation

Technology Readiness

Scale-up Across IACMI Core Partners

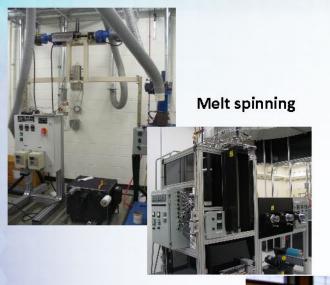
Carbon Fiber Technology Facility

Pre-preg production pilot/full scale

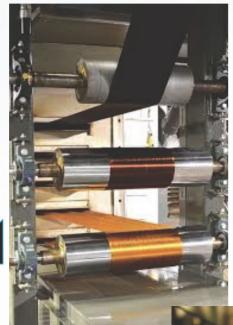
Pilot-scale **PCM** 750 ton

Full Scale PCM 4,000 ton press

Composite Materials and Processes



Unique open-access carbon fiber processing capabilities

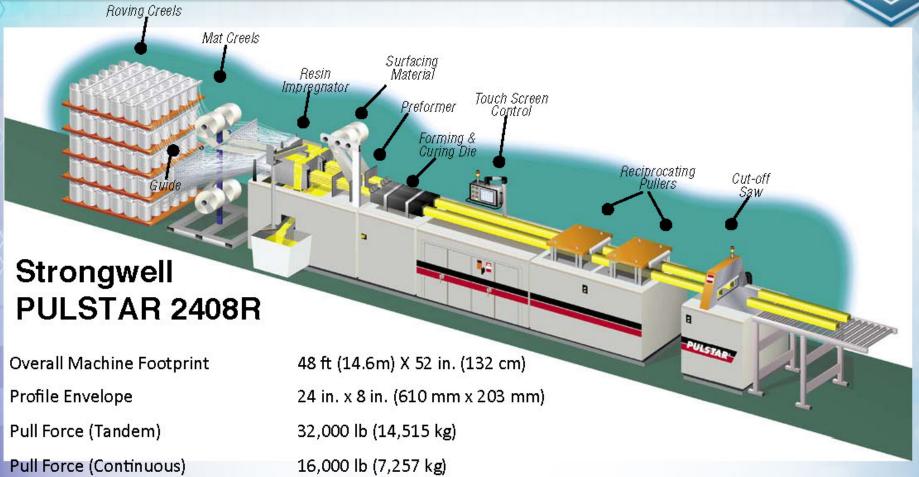


Textile PAN based CF

IACMI partner, Oak Ridge National Laboratory, has demonstrated a production method estimated to reduce the cost of carbon fiber as much as 50% and the energy used in production by more than 60%.

IACMI generating properties on composites produced with textile PAN carbon fiber

Big Area Additive Manufacturing



Recent enhancements in physical scale, speed of production, and work in high temperature polymer composites, e.g. PPS/CF

IACMI Pultrusion Machine

24,000 lb (10,886 kg)

1-120 in./min (2-305 cm/min)

Source: Strongwell

Clamp Force

Speed Range

IACMI Pultrusion Machine

Machine delivered to ORNL Will be installed and mid 2018

RocTool Induction Heating / Fast cycle processing of thermoplastic composites (MDF) installed July 2017

Equipment specifications

- Induction generator DZ150KW
- Tactile interface RT 21
- Closed cooling unit R45 model
- Performance cooling
- RocTool Technology / Tool Hardware

IACMI projects

Compression molding

Class A surface finish

Fast cycle time in recycled and virgin carbon fiber thermoplastic mats

Evaluation of range of material forms and resin for processing-quality-cycle times

Representative System and parts

Plasmatreat unit at MDF (Jet - RD1004 / Generator - FG5001 / Transformer - HTR1233) - MDF

Enabling plasma treatment • for surface enhancement

Tennessee (in place) and Michigan (planned)

- State-of-the-art FG5001 Plasma Generator
- Cleaning, etching, polymerization, surface activation and increased manufacturability.
- Bonding enhancement of low surface energy substrates

- Surface and Interface enhancement
- Overmolding/tape bonding
- Multi-material joining
- Additive manufacturing layer by layer
- Product development

Recycling Shredder (UTK)

COMPOSITIS I ACMI

MS-1714 Dual Shaft Shear Shredder

- Feed Chamber Opening: 17" x 14"
- Discharge Opening: 17" x 14"
- Infeed Hopper: Open Top: ½ Cubic Yard
- Diameter of Shredding Knives: 7-1/2" Thickness of Knives: 5/8"
- Motor: 15HP, 1800RPM Voltage: 480/3/60

IACMI projects

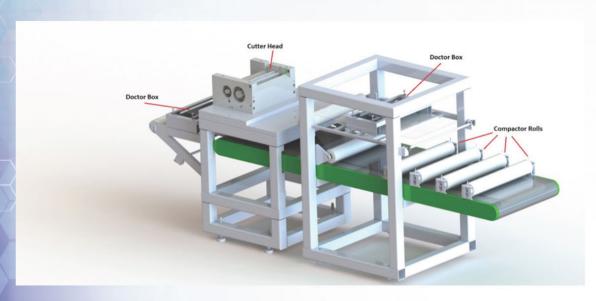
- Shredding aerospace end of life parts
- Recycling thermoset cured resins and composites
- Glass and carbon fiber thermoplastic shreds
- Reprocessing in extrusion-compression, injection-compression and other downstream processes

Multiphase Compounding - Pelletizing Line (UTK

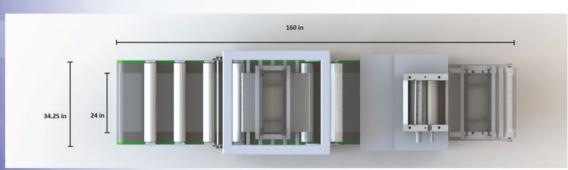
Specifications

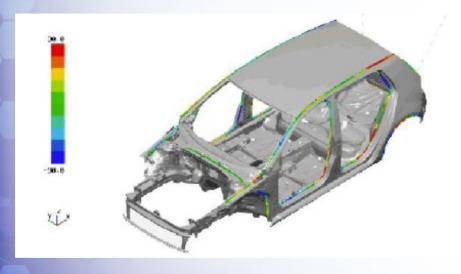
- Berstorff Model ZE25x30D Gala Pelletizing Line
- Complete Lab Size Under Water Pelletizing Line
- Screw size 25 mm
- L/D ratio- 30:1
- 15 HP, Gear Box Ratio 4:1

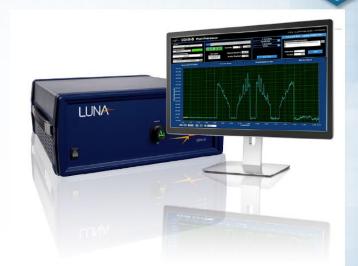
IACMI Use/projects


- Compounding of LCCF and other fibers with a range of olefin and engineered resins
- Multiphase syntactic foams and color compounds
- Production of noodles, pellets and tapes
- Feedstock for multiple processes

Sheet molding compound (SMC) line



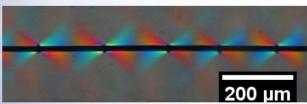

Illustration of cutting head of the SMC line


- Custom line (at UT early 2018)
- Produce up to 18" wide SMC
- · Glass, carbon, basalt SMC
- For use in multiple IACMI projects
- Materials collaboration with industry partners

Upgrade of LUNA Fiber Optic Strain and Temperature Sensing (ODiSI-B 5.0) System

- OPT06003 Full SW & HW upgrade includes ver 5.0.0 and upgrade to
 electronics, optical network, new standoff,
 High Definition sensing upgrade, system
 alignment and test. High-Speed CFG
 option.
- FBI Gauge 3D Visualization Software Package Acquisition

ODiSI - Key Benefits

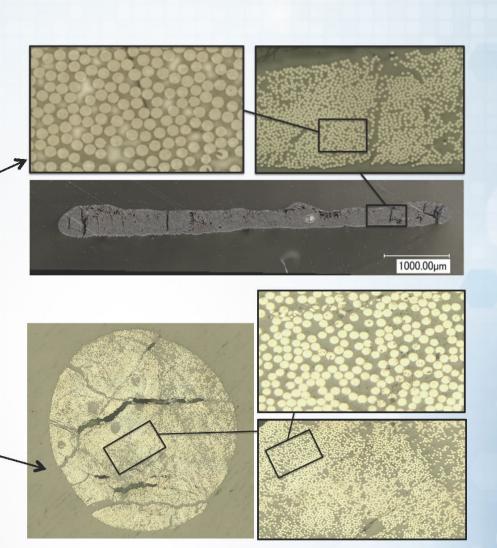

- High definition sensing offers unprecedented visibility into a design's structural performance
- Low profile and flexible sensors ideal for embedding within composite structures and measuring strain on curved surfaces
- Corrosion resistant, dielectric, and immune to EMI/RFI
- An ideal tool for validating FE models of composite structures

Integrated Load Frame and Olympus BX53 Reflected/ Transmitted Light Microscope

IACMI Use/projects: Interfacial Shear Strength for Optimizing Carbon Fiber Surface/Interphase with Matrix Resin

Polarized light images in transmission mode of a fragmented single T700 carbon fiber in an epoxy composite

UTK: Lab Scale Flexible Automated Infused Tow and Pre-Preg Manufacturing



Manual Method

Automated Method

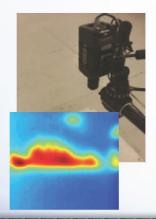
Example Microstructure from **Automated Carbon Fiber Tow Manufacturing** (UTK) VS **Manual Tow Manufacturing** Approach (CFTF)

Mobile NDE Lab Technologies

Flaw detection in composites

Mistras Acoustic Emission System 01/2017

Keyence Laser Profilometer 08/2015

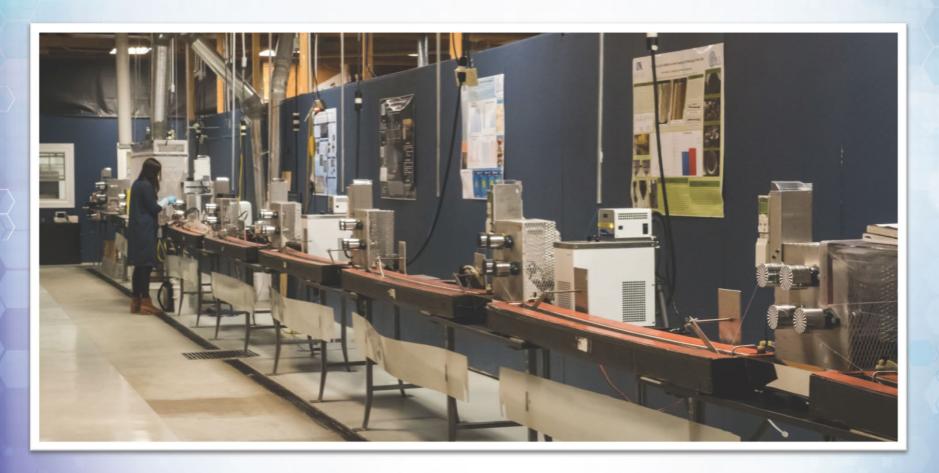


Keyence Laser-Displacement Sensors 08/2015

Cure Monitoring for Composites

Olympus EPOCH 650 Portable Ultrasonic NDE Systems 01/2017

FLIR High Resolution IR Camera 03/2016


HBM 100 Ms/Sec High Speed Data Acq. System 04/2016

National Instruments PXI 16 bit, 4 MHz signal driver 12/2016

UKY CAER solution spinning line for multifilament continuous tow

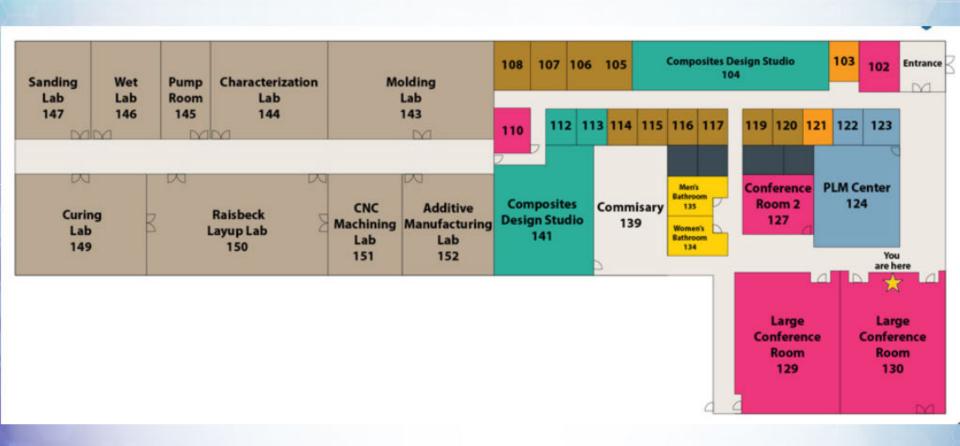
Heads UP, Real-Time Spinning Data Acquisition and Logging


- Polymer dope
 - Flow rate
 - Amount remaining
 - Temperature
- Filtration pressure drop
 - Temperature
- Spinneret pressure drop
 - Temperature
- Tow tension down the line
- Godet drive linear speeds
 - Tow draw ratios

Robotic Single Filament Tensile Testing and Linear Density

- FAVIMAT +
- Vastly increases single filament testing efficiency
 - 100s of filaments per sample

Design Modeling and Simulation


Indiana Manufacturing Institute

IMI Labs, Offices, and Conference Rooms

Simulation Software

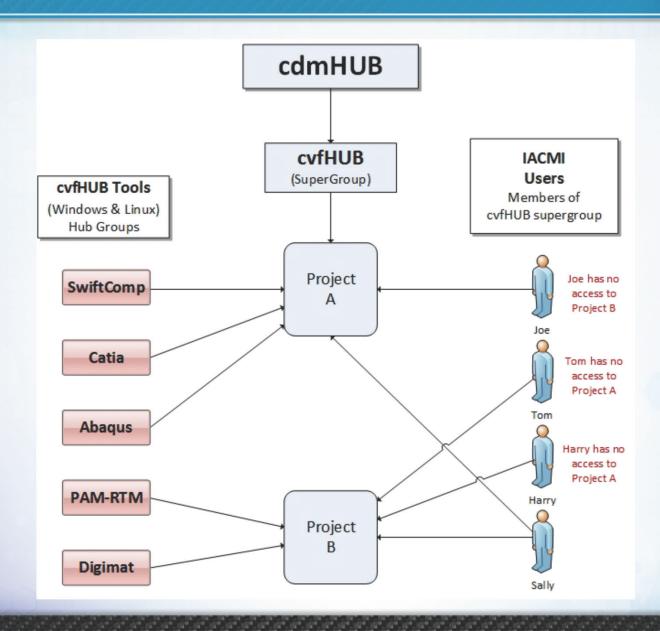
Integration of many major commercial simulation tools

PAM-FORM PAM-RTM PAM-DISTORT PAM-CRASH

CATIA SIMULIA BIOVIA ENOVIA DELMIA

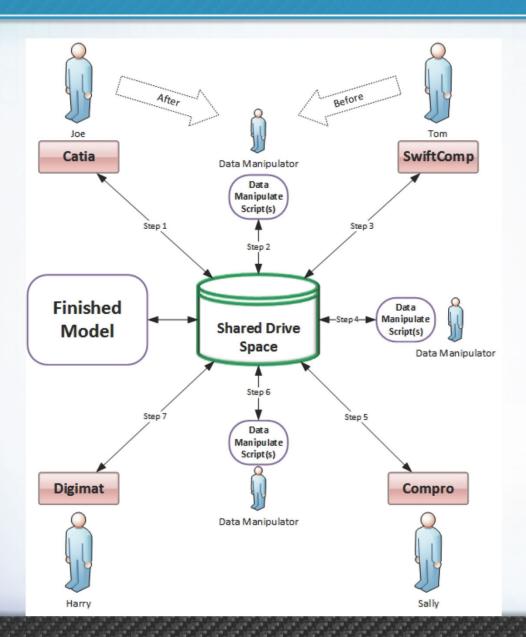
HYPERWORKS MDS

COMPRO RAVEN



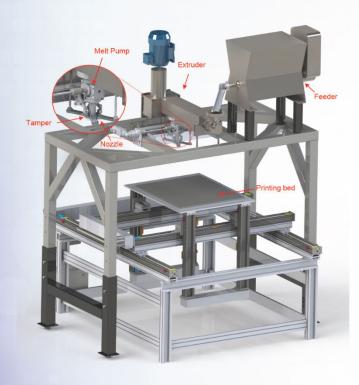
SwiftComp VABS

SPASSAULT The 3DEXPERIENCE Company


Project team member access on cvfHUB

Project collaboration on cvfHUB

Validation Labs


Compression Molding and HPRTM

Additive Manufacturing

Composites Molding Tools Printed

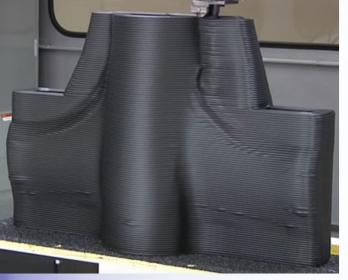
50% Carbon Fiber/PPS

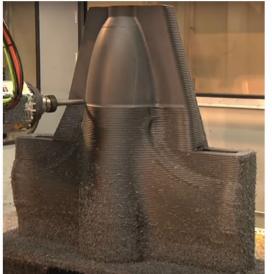
Thermoforming Tool

Compression Molding Pin Bracket Tool

LSAM Access

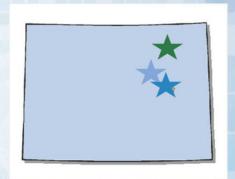
- Large Scale AdditiveManufacturing (LSAM)machine
- Combines polymer FDM with machining in same cell
- 10 ft x 10 ft working envelope
- Purdue can create print program and Thermwood will print at their facility in Dale, IN as contributed cost share





Example Application

Print Machine Finish



THERMWOOD

Wind Turbines

IACMI Wind TA <u>Composites Manufacturing and Education</u> <u>Technology</u> (CoMET) Facility

- Manufacturing space focused on composite manufacturing innovation
- 55' x 200' 10,000 sq. ft.
- Adjacent to blade test facility
- Full-scale blade component manufacturing

Infrastructure upgrades

Fabric rack and cutting tables

Electrical – 208V, 240V, 480V

Dual Crane System

- Two crane system permits handling of long parts like blades and tools
- 2 x 10 ton capacity
- Rails run length of facility

MVP Automated Dispensing Machine

- MVP automated mixing and dispensing machine
- Designed for use with polyesters, vinyl esters and ELIUM® thermoplastic

Graco Automated Dispensing Machine

COMPOSITIS IACMI INSTITUTE

- Graco automated mixing and dispensing machine
- Designed for use with epoxy infusion systems

Large Capacity Vacuum Pump

 Multiple station valves enable up to eight individual vacuum sources for larger infusions

Pump Courtesy DowAksa

Glass molding tables

 Glass tables enable two side observation of infusion flow

 Smaller of the two tables is heated to study effects of temperature

Heater blankets with 77C capability

Wind Blade Tooling

48.7m blade tip mold Courtesy GE

48.7m shear web mold Courtesy GE

Wind Blade Tooling

9m BSDS blade components Courtesy TPI Composites

Portion of 45m spar cap infusion mold Courtesy DowAksa

IACMI 9m Demonstration Blade

Blade Dimensions:

• Length: 8.325 m [27'-3.75"]

Root Diameter: 0.535 m [21.05"]

Max Chord: 0.789 m [31.06"]

Root Laminate Thickness: 32.25 mm [1.27"]

Blade Weight and Center of Gravity

Weight: 116.82 kg [257 lbs]

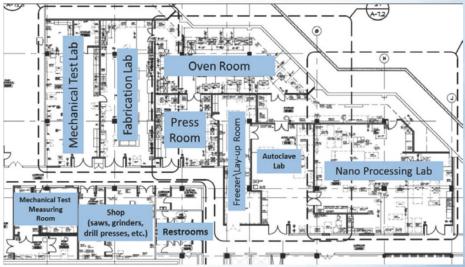
Spanwise CG 2.197 m [7'-2.5"]

Compressed Gas Storage

Composites Manufacturing at UDRI

- 12" PREPREGGER
- 3 AUTOCLAVES
- 7 HYDRAULIC PRESSES
- RTM
- VARTM
- FILAMENT WINDING
- PULTRUSION
- INJECTION MOLDING
- 60" TACKIFIER
- 3D PRINTERS
- HAND LAY-UP
- RESIN FILM INFUSION
- LARGE OVENS


UDRI Facility



MCP 4th Floor Labs and Office ~13,000 square feet

MCP Basement Labs ~13,000 square feet

UDRI Facility

Analytical Lab

Environmental Conditioning Lab

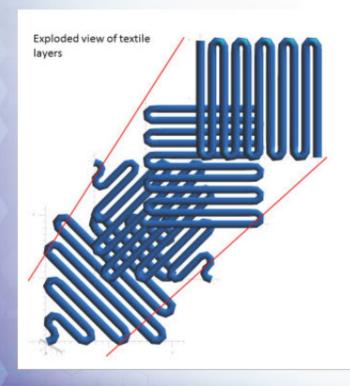
UDRI Facility

Film Line Hot Press Lab

Net shape preforming

Complex shaped CFRP parts:

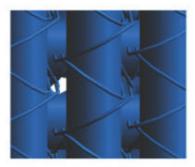
- > load detour
- > load introduction
- > stiffening function


Potential applications:

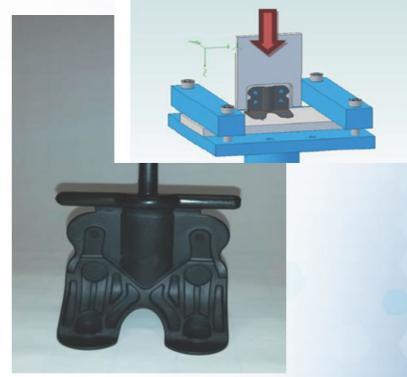
- Cleats, clips, brackets
- Window frames
- Frame elements

Net Shape Preforming

Simulation and fabrication of quasi-isotropic preform



Back Side – Quasi-Isotropic Laystitch preform. Differential amount of stitching is an artifact of the number of layers printed to show the quasi-isotropic nature of the preform.


Front Side – Quasi- Isotropic Laystitch preform (0, +/- 45, 90 Degree Layers all visible).

UDRI Facility – Injection Over Molding

High Temperature Tooling by Additive Manufacturing

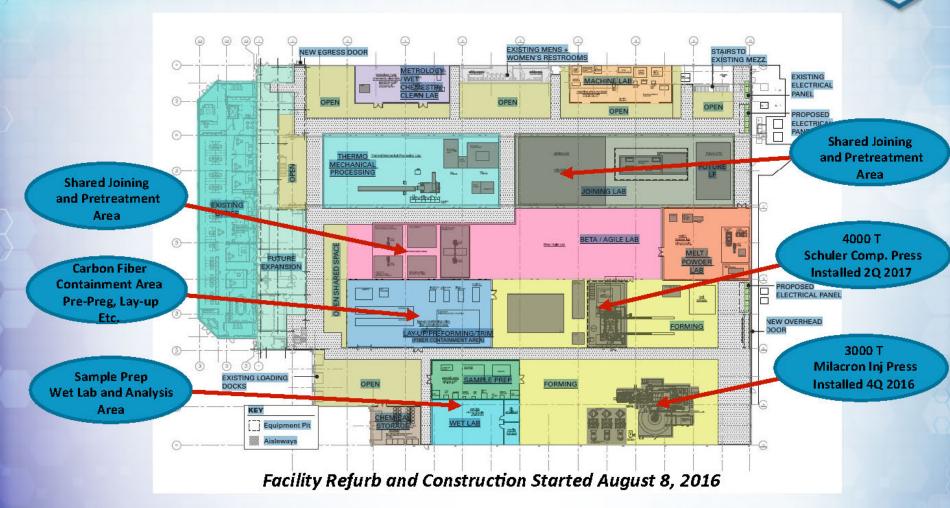
- Collaborative effort with Cincinnati, Inc (1 hour from UDRI)
- Focus on single sided tooling capable of 350F and 100 psi cure (autoclave, Rapidclave, e.g.)
- Focus material is specially formulated carbon fiber filled polysulfone. Other materials, such as PPS and PEI have also been trialed.


Vehicles

Vehicles

- Vehicles Technology Area includes two locations
- Michigan State University
 - East Lansing
 - Detroit ("Corktown")

National Capabilities-Michigan Vehicle Scale Up Facility in Corktown, Detroit


- Capitalization underway >\$15M
- Construction complete
- Equipment coming online

IACMI/LIFT VTA-SUF Facility Layout

Injection molding press

- Built by Milacron
- Specifications
 - 29,500kN (3,315T)
 - Platen: 3m x 2.5m (~10ft x 8ft)
 - 413 oz. max shot size (multiple screw sizes)
- Operational since February 2017

Compression press

4 x double acting cylinder for parallelism control

2 x single acting cylinder

- Manufactured by Schuler
- Short-stroke design
- Multi-process capable
 - "Closed mold" infusion
 - Compression molding
 - Thermoplastic forming, etc.
- Specifications
 - 36,000kN (4,000T)
 - Platen: 3.6m x 2.4m (~12ft x 8ft)
- Operational since October 2017

Compression press

Laboratories

- Analytical-wet lab & sample prep (340 m²)
 - Material preparation (e.g., mixing)
 - Materials Characterization
 - FTIR, DSC/DMA, Microscopy, etc
 - Trimming, cutting, grinding, etc.

- Controlled process lab (450 m²)
 - Temperature & humidity controlled
 - Negative pressure & filtered return (carbon containment)
 - Space for pre-preg & tape lay-up lines

12" prepreg line

Resin mixing unit for HPRTM and wet pressing

- Ordered from Hennecke
- Capable of processing epoxies and polyurethane systems
- High pressure (120 bar) capability
- Arrives late January
- In operation March 2018

Consigned Equipment

Plasma cleaning & coating (2 systems via LIFT)

Systems for rapid (induction) heat-cool for injection & compression molding

Tools currently available for project use

Saturn Fender

Tonneau cover (inner & outer)
Ford Sport Trac

Chevy Volt Battery Box

Technology Partner Facilities

Composite Prototyping Center Composite Recycling Technology Center

Composite Prototyping Center

CET Composite Prototyping Center

- Composite Prototyping Center
- Plainfield, NY (Long Island)

CPC Manufacturing Floor

CPC supports the following processes & functions:

Automated Fiber Placement

RTM / VaRTM

5 Axis CNC Routing Cell

Autoclaves, Ovens

Compression Molding, Heated Press

Hand Lay-Up with Laser projection assisted templates

Test and inspection – NDT

and kitting capabilities

Clean Room (Class 100,000)

Single Ply Cutting System with

and CMM tools and

nesting s/w

instruments

3D Printer

Walk-in Freezer

Laser Consolidation Fiber Placement

Composites Recycling Technology Center

- CRTC, located in Port Angeles, Washington
- Objective to recycle scrap prepreg into useful parts
- Initial operations commenced

