Project 3.2 –

Highlights from the Scale-Up Research Facility (SURF) in Corktown:

Enabling High Volume Manufacturing of Lightweight Automotive Composites

Dave Bank
Dow Automotive
on behalf of the 3.2 Team
January 17, 2018

Project 3.2

Development Challenge:

• Invention of novel carbon fiber intermediates, production methods, simulation tools.

Impact:

Deploy carbon composites on 100k+/yr vehicle platforms to stimulate mass adoption

Approach:

- OEM / Material Supplier / Tier 1 Supplier / Academic & National labs to develop:
 - Novel carbon fiber epoxy composite intermediates
 - Methods for molding / automation / recycle of in plant scrap
 - Simulation tools required to close gap between metals and composites for implementation in auto market.

Innovation (BP3 & BP4):

- Aligned Intermediates:
 - · Demonstrate technology in Ford GT
- Random Fiber Intermediates:
 - Invent novel intermediate
 - Demonstrate technology (production and molding) at scale

Collaboration, a Key to Task 3.2 Success

Public/Private Partnership Dives Innovation:

- Industrial Partners:
 - Ford Application/Part Design/Molding Process
 - Dow Resins/Intermediates/Production Process
 - DowAksa Carbon Fiber & Intermediates
- Academic Partners:
 - Design, Modeling & Simulation
 - Purdue Process & performance modeling
 - ORNL Cost modeling
- Composite Materials & Process
 - MSU/SUF Intermediate production & molding
 - MSU Interfacial science
 - UTK Morphological mapping

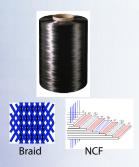
Project Team

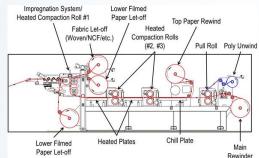
2011 Ford/Dow Early Discussions 2012
Ford / Dow
Enter JDA for
Light Weight
Materials

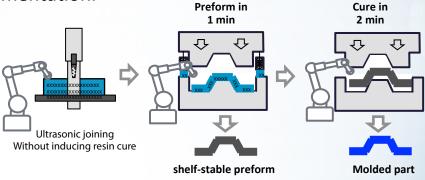
2013
DowAksa
Formed as
Carbon Fiber
Supplier

2014
IACMI Forms
ORNL joins team

2015
Ford/DowAksa Sign
JDA for Low Cost CF
Dow files critical
patents for
VORAFUSE™ P6300


2016
Purdue, UTK and MSU
join team
VORAFUSE™ P6300
achieves Ford <AR>
Ford GT Job 1 Achieved


2017
IACMI-SUF in Corktown implements prepreg line and large part compression molding


Achievements: (BP1-BP3)

- Target: Components replacing metal in primary body structure via align carbon fiber intermediates
- Progress to date: Invented novel intermediates & chemistry, devised automated processing technology, achieved OEM spec & demonstrated viability (B-pillar)
- Delivery: Novel product/process developed, specified and implemented (Ford GT)
 - > Ford reviewing opportunities for broad implementation.

3. Automated fast ply cutting, lay-up, preforming & molding

✓ Shelf stable preforms and ultra fast cure (<2 min)

- 1. Carbon Fiber
- ✓ DowAksa A42
- 2. Prepreg manufacturing
- ✓ Room temp shelf stable
- ✓ Tack Free

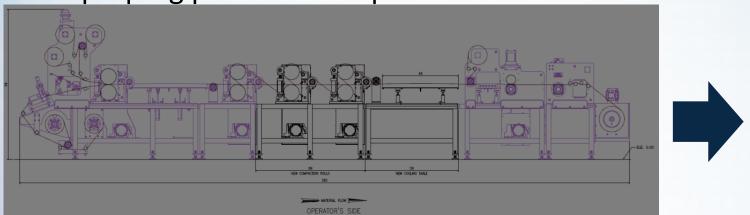
PROFORMANCE, COMPOSETE, EPICHY (EP) CARBON PIBER

PRE-PRIOR (13 P.K.E. V.G.)

1. SOOPE

The specification defines the performance requirements for pasts made of predictional (AC) carbon flates for the fact that the land predictional (AC) carbon flates for the fact that the land proformation in the fact that the land proformation in the fact that the land proformation in the fact that the land proformation is the land proformation in the land proformation proformation is the land proformation pasts or a section of the present extensive proformation.

✓ In-plant recycle of trim scrap


Header Nose Bottom

- 4. Vehicle level engineering
- √ ~6Kg mass save/vehicle
- 5. Validation testing
- 6. Material specification
- 7. Technology demonstrator Ford GT header & nose bottom
- √ (current production)

MSU SuRF... an enabler for the composites industry

✓ Novel prepreg production capabilities:

Scale-up

✓ Novel large part compression molding capabilities:

➤IACMI Task 3.2 2018 SOPO fully reliant on the MSU-SuRF for Scale-

