Characteristics of The Wind Turbine Blades Industry

Jacques Nader & Peter Fuglsang - Siemens Wind Power
Outline

- Facts on Siemens Wind Power
- Company growth and Intro to the Boulder Center of Excellence
- Characteristics of The Wind Turbine Blades Industry
 - Growth in Rotor Size
 - Manufacturing Characteristics
 - Blade Design and Innovation
- Challenges and long term outlook
Outline

- Facts on Siemens Wind Power
- Company growth and Intro to the Boulder Center of Excellence
- Characteristics of The Wind Turbine Blades Industry
 - Growth in Rotor Size
 - Manufacturing Characteristics
 - Blade Design and Innovation
- Challenges and long term outlook
Siemens Wind Power
Facts at a glance

<table>
<thead>
<tr>
<th>Siemens Wind Power facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of the world’s leading suppliers of wind power solutions</td>
</tr>
<tr>
<td>Acquired Danish wind turbine manufacturer Bonus Energy A/S in 2004</td>
</tr>
<tr>
<td>Total Installed Base: > 17,600 turbines with ~ 35 GW capacity</td>
</tr>
<tr>
<td>2016 Installed base : > 1,370 turbines with > 4 GW capacity</td>
</tr>
<tr>
<td>~14,500 employees globally incl. Wind Service</td>
</tr>
</tbody>
</table>
Outline

- Facts on Siemens Wind Power

- Company growth and Intro to the Boulder Center of Excellence

- Characteristics of The Wind Turbine Blades Industry
 - Growth in Rotor Size
 - Manufacturing Characteristics
 - Blade Design and Innovation

- Challenges and long term outlook
Onshore Wind – Siemens with considerable experience and track record of installed projects

Cumulated Siemens onshore installations (GW)

ON installed base as of June 2016: >26 GW

First project
1979: 2 x 22 kW (10.2m)
Vindeby, Denmark

First 1MW turbines
1998: 17 x 1.0-54
Wilsikow, Germany

First project w/o subsidies
2009: 62 x 2.3-82
Wellington, New Zealand

First Commercial DD
2011: 3 x 3.0-101
Lejølle, Denmark
Offshore Wind – Leading player with >7,3 GW installed base in strongest growing market

Cumulated Siemens offshore installations (GW)

OF installed base as of June 2016: >7,3 GW

First project
1991: 5 MW Vindeby, DK

MW turbines
2000: 40 MW Middelgrunden, DK

GW project
2011: 630 MW London Array, UK

Master Agreement
2012: 1.8 GW DONG Master Agreement
Wind Turbine Blade R&D Center of Excellence in Boulder, Colorado

- Established in 2008
- 50 full-time engineers
- Rotor research, design and technology
- 30% PhD & 70% Masters
- Investing in American engineering
- Global footprint

Attractive Location for Top Talent:
- Forbes: “Boulder Tops List of America’s Smartest Cities”
- Money: “Louisville Best Places to Live”

![Map of Boulder](image)
NREL-SWP CRADA Test Turbine
Outline

- Facts on Siemens Wind Power
- Company growth and Intro to the Boulder Center of Excellence
- Characteristics of The Wind Turbine Blades Industry
 - Growth in Rotor Size
 - Manufacturing Characteristics
 - Blade Design and Innovation
- Challenges and long term outlook
Characteristics of The Wind Turbine Blades Industry

1. Growth in Rotor Size
2. Manufacturing
3. Design & Innovation
The most dramatic and overwhelming representation of innovation – the growth in size

30 years of growth...

Driven by strong market growth
Relatively short product market cycle time

* Expected
Source: IRENA, EWEA
Fundamental changes in shape and design
30 years of blade development scaled to the same size

We have come a long way…
Fundamental changes in shape and design
30 years of blade development scaled to the same size

Two blades scaled to same size

75 m blade for SWT 8.0-154

5 m blade from Bonus 27 kW
Fundamental changes in shape and design
30 years of blade development scaled to the same size

Two blades scaled to same size

- Profiles changed from 1930s aircraft types to modern custom-made types
- Solidity changed from ~10% to much less than 5% (Blade area divided by swept area)
- A 75 m scaled version of the 27 kW blade would weight over 50 Tones (Approximately the weight of 30 mid size cars)
SWP 8.0-154 with 75 m blades
One of the world’s largest fiberglass component cast in one piece

• 75 m long blades and a rotor diameter of 154 m.
• Blade weight of 25 tons equal to 16 mid-sized cars.
• The rotors swept area is equivalent to 4½ football fields.
The 154 m rotor for the 8.0 MW is a large piece of equipment … Here with an Airbus A380
Prototype installation ...
75 meter blade mould ...
B75 blade, during transportation
Preparing B75 flapwise blade load test …
Characteristics of The Wind Turbine Blades Industry

- GROWTH IN ROTOR SIZE
- MANUFACTURING
- DESIGN & INNOVATION
IntegralBlade®
Patented Manufacturing Method by Siemens

We can make the world’s largest composite structures infused as one piece (NO GLUE JOINTS!!)
Manufacturing: Still very manual...and relatively fast
Mold cycle time less than 24 hrs
Over 2300lb of glass per hour
Some Facts

Blade Manufacturing

- We make the world’s largest composite structures infused as one piece
- On average it takes 24 hours to make a blade
- Layup speed is over 2300 lbs per hour
- Less than $10 per KG
Characteristics of The Wind Turbine Blades Industry

- Growth in Rotor Size
- Manufacturing
- Design & Innovation
25 years of Fatigue loads

Over 100 million cycles

Source: WMC (TU Delft-ECN)
TIP deflection and Buckling challenge...

Up to 50 ft of tip deflection!
Innovation: Aerodynamics, Materials, Loads reduction

- Aeroelastic tailored blade
- Pre-bend
- Dino Tails®
- High airfoil thickness
- Wind turbine airfoils
- Reduced max. chord
- Flatback airfoils

Strain or Stress vs. Number of cycles:
- Fatigue resistant materials

Stiffness vs. Density:
- Engineered cores
- Balsa
- Foam cores

Stress vs. Strain:
- Carbon
- HM Glass
- Glass

Unrestricted © Siemens AG 2016 All rights reserved.
Page 31
Some Facts

Blade Design

- Over 100 million fatigue cycle over a lifetime of 25 years
- The first 30% of the blade can weigh over 50% of the total blade mass
- The 75 m blade has tip deflection of over 15 meters (~50 ft)
- Blade density in 2015 is 1/3 the blade density in 2004
- 30% of blade mass is from resin
To summarize some highlights…

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>Rapid Growth</td>
</tr>
<tr>
<td></td>
<td>> 150 meters</td>
</tr>
<tr>
<td>Product Market Life Cycle</td>
<td>Short</td>
</tr>
<tr>
<td></td>
<td><3 years</td>
</tr>
<tr>
<td>Production Speed</td>
<td>< 24 hours</td>
</tr>
<tr>
<td></td>
<td>>2300 lbs per hour</td>
</tr>
<tr>
<td>Manufacturing Method</td>
<td>Manual</td>
</tr>
<tr>
<td>Cost</td>
<td><$10 /KG</td>
</tr>
<tr>
<td>Product Life Time</td>
<td>>25 years</td>
</tr>
</tbody>
</table>
Outline

- Facts on Siemens Wind Power
- Company growth and Intro to the Boulder Center of Excellence
- Characteristics of The Wind Turbine Blades Industry
 - Growth in Rotor Size
 - Manufacturing Characteristics
 - Blade Design and Innovation
- Challenges and long term outlook
Future challenges

Leading edge erosion

Testing

Transportation

Maintenance

Manufacturing/automation

Size

Tip deflection

AEP
Generic long term outlook

Cost efficient turbines

Smart wind turbines and farms

Competitive wind energy LCOE
Thank you for your attention

Jacques Nader
Head of Blade Design
Siemens Wind Power
1050 Walnut St, suite 303
Boulder, CO, 80303
E-mail: jacques.nader@siemens.com