Compressed Gas Storage Technology Area

Brian Rice
Director, CGS Technology Area
UDRI

Jared Stonecash
Group Leader
UDRI
Compressed Gas Storage Technology Area and Intermediate Scale Manufacturing

Jared Stonecash
Group Leader
Univ. of Dayton Research Center
January 14, 2016
Why Ohio?

Ohio ranks #2 in the US in automotive-related employment

60% of compressed gas-fueled vehicle manufacturers within half-day drive from IACMI centers
Ohio Technology Area

Site Director
Brian P. Rice
UDRI—Division Head
937-229-2519
brian.rice@udri.udayton.edu

- >40 years’ experience in applied, advanced composites RD&D, over 50 staff
- 200,000 ft², fully equipped and industrially focused
- ISO-9000 Certified
 - 440 ton co-injection molder
 - 10 x 5 ft, 800 °F, 200 psi autoclave
 - 1000 ton press, 28” x28”, 1000°F
 - 12” wide prepregger, 18” film line
 - 60” fabric tackifier line
 - Custom compounding TS, TP
 - Comprehensive testing
 - AM low cost tooling
 - Reverse engineering, design

Automation processes
- In situ thermoplastic infusion

Models for
- Preforming
 - Infusion
 - Cure kinetics
 - Performance

Develop automated manufacturing cell

High-Pressure Resin Transfer Modeling (HP-RTM)
- Preforming
 - Joining

Low cost carbon fiber
- Lab-scale intermediates and composites fabrication
 - Nondestructive evaluation
 - Recycling
DOE Compressed Gas Storage (CGS) Tank Targets

Reduce the cost of a type IV hydrogen storage tank by 30% (2018) and 50% (2024) with a capacity of 500,000 units/year

Type IV: An all-composite construction featuring a polymer (typically high-density polyethylene, or HDPE) liner with carbon fiber or hybrid carbon/glass fiber composite. The composite materials carry all of the structural loads.

Fabrication method: Filament winding, a mature industry, 40+ years

The markets: Pressure vessels (2015)

High-pressure gas storage vessels represent one of the biggest and fastest-growing markets for advanced composites, as transportation markets demand alternative fuels (Compressed natural gas [CNG] and hydrogen) for motive power systems.

Composites World January 12, 2015
CGS Manufacture SOA

*Courtesy of Xperion

The Institute for Advanced Composites Manufacturing Innovation
CGS Potential Project Areas

- **High technology readiness level (TRL):** Increase efficiency of filament winding and foster integration of hybrid reinforcements. Improve performance and reduce processing time with new matrix resins.

- **Mid TRL:** Dramatically decrease fiber placement time/cost by wrapping with custom braid. Also expected to increase safety and damage tolerance while reducing mass. Application area focus is for Class 6–8 trucks.

- **Low TRL:** Support manufacture of conformal/novel tank design for automotive market designed to preserve trunk space. Recognize adsorption technology could significantly reduce pressure requirements and alter optimal tank design. IACMI to foster improved safety as well as cost reduction.
CGS Project #1

Braid Offers Potential for Rapid Manufacture, Enhanced Safety, and Reduced Mass
xperion Energy & Environment

➤ Leading manufacturer of type IV CNG cylinders
 • 25 years of composite experience - entered the CNG business in 2006
 • More than 60k cylinders in the field.
 • Supplier to key Automotive OEM programs

➤ Fuel tank solutions for all vehicle classes
 • Product range from Passenger cars to Class 8 trucks – including hydrogen

➤ Bulk storage and transport applications
 • X-STORE trailer module offers the highest natural gas storage capacity in the world
Leverage unique properties of engineered braid to develop next generation CGS tanks.
UDRI Overview

• Established in 1956 in Dayton, OH
• Performs basic and applied research, engineering services, and testing
• Fully supported by external sponsors
• Third in the U.S. in funded materials research
• More than 460 professional research staff
• 218,000 ft² of facilities
• Average annual revenues (last 3 years): $90 million
• Currently under contract for more than $550 million of research
Ohio IACMI Automotive Work Cell

1000 ton press for HP-RTM and prepreg compression molding
“One of a kind” all-electric Cincinnati Milacron injection molding machine. Ability to use 440 tons of clamping force and two barrels, our machine is ideal to conduct developmental work and short production runs for automotive insert/overmolding applications.

Injection Molding Specifications

- Cincinnati Milacron NT440 S Powerline model
- Horizontal injection shot capacity: 40 oz (1135 g)
- Vertical injection shot capacity: 10 oz (284 g)
- Maximum injection rate (horizontal): 20.8 oz/s (590 g/sec)
- Peak injection pressure: 30,000 psi (206 MPa)

Mold and Clamp Unit

- Daylight: 56.1 in. (1425 mm)
- Minimum mold height: 9.8 in. (250 mm)
- Maximum mold height: 29.5 in. (750 mm)
Unique Net Shape Preforming
Additive Fabricated Rapid Tooling

Carbon Fiber/Polymeric Tooling for 350F Cures

“Art to Part” in 3-4 days
High-Rate Test Capabilities

- National/international expertise
- Rates up to ~1000 in./s [25.2 m/s] (800 s⁻¹)
- Standard specimens as well as structures/ components
- Non contact digital image correlation (DIC) system for strain measurement

*Long glass fiber–filled polypropylene

Carbon/Epoxy Braid

Vinyl ester/epoxy weave Gaged and DIC

The Institute for Advanced Composites Manufacturing Innovation
Integrated Computational Materials Engineering (ICME)

Demonstrate linking of engineering disciplines and tools to design and manufacture key feature articles.
UDRI Contact Information

Contact UDRI personnel to network and discuss potential IACMI projects:

Brian Rice
Site Director
937-229-2519
brian.rice@udri.udayton.edu

Jared Stonecash
937-229-4361
jared.stonecash@udri.udayton.edu