

Wind Technology Area

Derek Berry Director, Wind Technology Area IACMI

Wind Technology Area

Derek Berry Director, Wind Technology Area

Institute for ADVANCED

Composites Manufacturing
INNOVATIO

January 14, 2016

Wind Technology Area

- Wind turbine blade and turbine component manufacturing
- Material, labor, cycle time, reliability, recycling, light weighting,
- Wind industry / National Labs / Universities
- Wind industry metric: LCOE

$$LCOE = \frac{\text{sum of costs over lifetime}}{\text{sum of electrical energy produced over lifetime}} = \frac{\sum_{t=1}^{n} \frac{I_t + M_t + F_t}{(1+r)^t}}{\sum_{t=1}^{n} \frac{E_t}{(1+r)^t}}$$

MI

Integration:

- **Thermoplastics**
- **RTM**

Automation (Viper)

IN

Models for:

- **Preforming**
- Infusion
- **RTM**
- Pultrusion
- Cure kinetics
- Performance

Automation

OH

- Fast resin infusion and curing
- Intermediate

scale

Pultrusion

Low-cost carbon fiber

- Nondestructive **Evaluation**
- Blade recyclability

The Institute for Advanced Composites Manufacturing Innovation

TN

State of Colorado Support

- Colorado Office of Economic Development and International Trade (OEDIT)
- Fully invested in composite manufacturing development
- \$7M contribution
- Actively involved in oversight
- Workforce development
- Economic development
- Colorado industry

State of Colorado - Investment

- Strong emphasis on workforce development for existing and potential Colorado wind manufacturing facilities
 - Vestas Wind (hiring 400+ composite technicians this year)
 - Bach Composites
- Local manufacturing innovation space for major wind OEMs in Colorado
 - Siemens (Boulder), Vestas (Windsor, Brighton and Pueblo)
- Economic development state views the Wind TA as a potential regional hub for wind companies

Drivers of Wind Capacity Growth / Challenge

 Ability to scale wind turbine technology is a driving force in reducing the average wind LCOE in the United States

Average wind LCOE and wind technology scale-up trends

Challenges of blade transport (SSP Technology)

- Composite materials
- Composite manufacturing process innovation
- Large blade transportation logistics
- Blade reliability

Source: Wind Vision: A New Era for Wind Power in the United States, US Department of Energy 2015

The Institute for Advanced Composites Manufacturing Innovation

Thermoplastic Composites Manufacturing

- Exploration of reactive infusion thermoplastic resins for improved cycle time, durability, recyclability
- Overcome concerns with fiber-matrix adhesion, high temperature processing and characterization
- Industrial partners: Johns Manville, TPI Composites, Arkema
- Technical Areas:
 - Techno-economic model
 - Develop spar cap baseline properties
 - Material development
 - Process development
 - Tooling development

Thermoplastic Project: BP1 Work

Criteria	TP-VARTM	TP-RTM	TP-RIM	TP Pultrusion	TP-Prepreg
				ri i diti dolli	ППоргод
Design freedom	0	+	+		+
	Same as thermoset process today	As today, but better flow length	As today, but better flow length	Fixed cross section	Fabric design and fiber content adjustable
					Lamination process
Ease of production	0	+	-	-	++
			Potential fiber misalignments, potential resin degradation due to high pressure		Decoupling of polymerization and part production
Production costs	0	+	+	+	++
		Only due to infusion and polymerization	Only due to infusion and polymerization	Continuous process	Continuous prepreg process
Equipment and mold costs /	0/+	· · ·	-	+	++
component	potential higher molding costs	Higher costs for equipment and potential mold	Higher costs for equipment and potential mold	Costs reduced due to continuous process	Mainly depreciation for the continuous process
Available know how	0	0	0		+
and training requirements	Knowhow available, training required	Knowhow available, training required	Knowhow available, training required	Very limited know how available	Know how available, training required
Production Scrap	0	0	0	+	++
	as today	as today	as today	continuous process, mainly during start up	continuous process, easy to recycle

Thermoplastic Manufacturing Process Evaluation

Thermoplastic Project: BP1 Work

- Definition of baseline tooling specifications
- Master plug
- Standard production tooling
 - Design
 - Laminate
 - Heating system
 - Vacuum system
 - Mold framework
 - Bonding operation equipment
 - Staging
- Mold qualification
- Design tolerances
- Mold maintenance

Thermoplastic Project: BP1 Work

- Constructed backbone of techno-economic model
- Defined baseline structural properties for wind blade spar caps
- Evaluated thermoplastic matrix choices:
 - Caprolactam-based nylon-6
 - Acrylic (Arkema Elium)
- Evaluated manufacturing methods:
 - Infusion, pultrusion, pre-preg and RTM
- Detailed potential tooling challenges for thermoplastic resin processing
- Manufactured four thermoplastic panels
 - Panel 1,2: Nylon-6 using RTM
 - Panel 3,4: Arkema Elium using infusion

Thermoplastic Project: BP2 Plans

- Continued evolution of techno-economic model
- Commission laboratory scale VARTM facility at CSM
- Produce panels for each chosen combination of thermoplastic resin and manufacturing method
- Use panels to produce test coupons to determine the material properties of each combination
- Design and fabricate blade component tool to be used with thermoplastic resin composites
- Integration with the Modeling & Simulation TA and the Materials & Processing TA
 - Process parameter modeling
 - In-process non-destructive evaluation (NDE)

IACMI Wind TA Personnel

Derek Berry (303) 717-8416 derek.berry@nrel.gov

Ron Schoon (303) 275-4644 ron.schoon@nrel.gov

